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Abstract. The calculation of renormalised one-loop corrections to the anomalous magnetic 
moment and mass of an electron localised between conducting plates is performed within 
a consistent long-distance expansion. Application of the Euler-MacLaurin formula yields 
gauge- and cutoff -independent corrections to physical quantities in a transparent way. The 
boundary contributions to the wavefunction renormalisation and the vertex correction 
respect the Ward identity of QED. In the limit of the distance to one of the plates going 
to infinity we obtain the correction for a single plate at distance d. The coincidence of the 
corrections Aae =Am/ m = -cr/4md to the electron mass m and anomaly factor a, explains 
an apparent discrepancy in the recent literature. 

1. Introduction 

A long time ago Casimir [ l ]  discovered an amazing consequence of the quantised 
vacuum structure of QED: boundary conditions constraining the quantised electromag- 
netic field at the surface of conductors diminish the zero-point energy and lead to an 
attractive force between conducting plates. In fact, all radiative corrections to QED 

processes are (slightly) modified near conductors. In a fundamental series of papers 
Babiker, Barton and Grotch [ 2-41 have investigated such corrections to the anomalous 
magnetic moment of electrons bound in hydrogen-like atoms or interacting with an 
external magnetic field. Their main interest was the applicability of the non-relativistic 
approach to magnetic effects such as the anomalous magnetic moment. Recently this 
subject found renewed interest for two reasons: first, Fischbach and Nakagawa [5 ,6]  
and Kreuzer and Svozil [7 ,8 ]  tried to give a consistent formulation of QED between 
conducting plates and to compute the resulting modifications of the physical quantities 
electron mass m and anomalous magnetic moment a,. At the same time, remarkable 
progress in the UC-Seattle geonium experiment [9] required a thorough treatment of 
systematic errors in this high-precision measurement of a, due to the presence of 
conductors [ 10-121. 

This paper is addressed to the first reason. In 0 2, based upon the work of Kreuzer 
and Svozil [ 81, we recall the photon propagator, fulfilling the boundary conditions 
imposed by two parallel ideal conducting plates. Our approach to a consistent long- 
distance approximation for boundary corrections to QED processes employs fermion 

t Present address: Institut fur Theoretische Physik, Universitat Hannover, Appelstrasse 2, 3000 Hannover 
1, Federal Republic of Germany. 
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fields localised as Gaussian wavepackets. Renormalisation proceeds through subtrac- 
tion of the infinite-space counterterms. 

In 0 3 the finite and gauge-independent results for physical quantities such as the 
electron mass and anomalous magnetic moment are obtained using the Euler- 
MacLaurin formula. We also check the Ward identity 2, = Z,, which guarantees that 
there are no corrections to the gyromagnetic ratio 2 associated with the photon vertex 
YP. 

In 0 4 the results are summarised in the context of recent literature on this subject. 
The coincidence of our findings for the mass and anomaly factor corrections, respec- 
tively, resolves a hitherto unsettled controversy. In the limit of the distance to one of 
the plates going to infinity we also obtain the results in the case of a single conducting 
plate. 

2. Radiative corrections between conducting plates 

In our treatment of QED processes near conductors we confine ourselves to plane 
conductors, where the photon propagator is easily calculated by the method of mirror 
charges. Electrons are assumed to be well localised, so that their contact interaction 
with conductors can be disregarded. 

A major difficulty in obtaining the photon propagator is that in QED the electromag- 
netic field is usually described by the gauge potential A,,, whereas boundary conditions 
constrain the gauge-invariant field strength 

F,,,,nrrEFYap I s  = 0 (2.1) 
(the subscript S means ‘at the surface of the conductor’, and n o = O ,  n is orthogonal 
to the surface in the rest frame of the conductor). Boundary conditions on A,, depend 
on the gauge choice. In the case of a plane conductor there is a (unique translation- 
invariant) gauge consistent with AIs = 0, namely the axial gauge nA = 0 with the constant 
vector n of (2.1). However, in order to have better control of non-covariant terms, 
arising due to broken translational and rotational invariance, we work in a covariant 
gauge at the expense of additional sign factors in the photon propagator, stemming 
from mirror charges with an odd number of reflections (see Kreuzer and Svozil [8] 
and Brown and Macley [l]). We take the conducting surfaces to be described by the 
planes x3 = d and x3 = d -a. Then, in natural units h = c = 1, the photon propagator 
in the Feynman gauge is represented by the mode sum (see figure 1) 

with 

e = e x p ( 2 ~ i t )  t = d / a  

and the notation for a vector U 

_v = ( uo, U’, U’) fig = u p  E (UO, U’, 02, - u 3 )  

(the sign changes of three-components of tensors according to bars do not disturb the 
Einstein summation convention). The mode sum representation (2.2) is related to the 
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Figure 1. An electron is localised (with width U )  at the origin between conducting plates 
at x3 = d and x3 = d -a. Mirror charges corresponding to an odd number of reflections 
are denoted by + and contribute sign factors due to their reversed motion perpendicular 
to the plates. 

sum over mirror charges by Poisson’s formula. The two-plates configuration of figure 
1 has the advantage of eventually also yielding the one-plate results in the limit a + CO. 

The renormalisation programme is carried out by subtracting from the divergent 
self-energy and vertex correction graphs (at one loop, see figure 2) the usual infinite- 
space QED counterterms. In this way we obtain finite corrected values of the electron’s 
mass m and anomaly factor a, = g/2 - 1. Due to broken translational invariance we 
have to work in configuration space (nevertheless, it is convenient to use the Fourier 
integral representation of wavefunctions and propagators). In particular, it is essential 
to specify the location of the fields. We assume the in and out electron states to be 
Gaussian wavepackets localised at x3 = 0 with width (T << d, a - d, 

(with normalisation (filu) = ( 2 ~ ) ~ S ~ ( p ‘ - p ) ) .  This amounts to a restriction to motion 
parallel to the plates as will be discussed-below. In order to get an impression of the 
magnitudes involved we quote some parameters of recent Penning trap experiments 
[9]. There a - 1 cm and electrons are localised by an electric quadrupole field 
with an electrostatic potential of - 10 V so that at the temperature of liquid helium 
a- 3 x lo-’ cm. Due to the exponential fall off of the probability density in the 
Gaussian wavepackets (and due to the smallness of the Compton wavelength 1/ m << a) 
contact interactions of electrons with the conductor (and boundary conditions on their 
propagator) are safely neglected. 

la1 I bl 

Figure 2. One-loop contributions to ( a )  self-energy Z(x,y) and ( b )  vertex correction 
.hr(x.Y;  2). 
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We proceed in a long-distance expansion a >? l / m .  With the above parameters 

7r h = -- 3 x 
ma 

Thus, in a reasonable experimental situation the first term of an expansion in h will 
usually be sufficient. 

Although there exists an integral representation of A ( x , y )  (Bordag et a1 [l]), 
obeying the boundary conditions at the plates, we make use of the mode sum representa- 
tion (2.2). Boundary corrections then result in calculating the difference between mode 
sum and (free space) mode integral 

of some function f ( n ) .  To this end the Euler-MacLaurin formula [13] (EMF)  

n-1 b 

h j = O  1 f ( a + j h ) - j  a f (x)dx=(- :hf ( t )+  / = 1  f (21) h 2 ' ~ f i 2 ' - 1 ) ( ~ ) ) l ' = b + O ( h 2 m + z ~  r=a (2.5) 

with h = ( b  - a ) / n ,  is a very convenient tool [8]. Certainly, for singular integrands 
f ( n )  more sophisticated analytic methods have to be employed (see Barton [14]). 
However, according to the EMF, in a long-distance expansion boundary corrections 
show up only at singularities of f(n>. Thus it is possible to isolate the potentially 
contributing terms at an early stage of the calculation and to obtain the results in a 
simple and transparent way. 

A remark is in order, concerning possible contributions at infinity. Of course, for 
individually convergent sum and integral in (2.4) there should be no problem. The 
mass renormalisation, however, is divergent with only the difference D in (2.4) giving 
rise to a finite correction to the physical mass of the electron. Still worse, decomposition 
of f( n )  into regular and singular terms will yield even unbounded integrands J ; (  n )  
(with f = ZJ;). Such problems have been treated extensively by Barton [14], who has 
given reasonable definitions of D by appropriate cutoff procedures. In (2.4) only the 
even part of f(n) can contribute to 0, so that, in the case of divergence, D can be 
defined by 

D E l i m  c' - dn &f(n)+f(-n)]exp(-dn) 
6-o(":o 16 (2.6) 

where the prime indicates that we take f of the n = 0 term in the sum. For an at most 
linearly growing smooth functionf( n )  it would be sufficient to simply give equal weight 
to the sum and integral, respectively, at the boundary. 

Fischbach and Nakagawa [5 ,6]  have proposed a strong dependence of boundary 
corrections on the plasma frequency A at which a conductor becomes transparent for 
electromagnetic radiation. However, because boundary corrections are long-distance 
effects, such corrections should be at most of order [8] h / A a  - h x Again the 
EMF gives an estimate of the plasma frequency dependence to the end that only 
negligible higher-order corrections can arise for a smooth cutoff behaviour. Indeed, 
as pointed out by Tang [IS], the strong cutoff dependence found in [5 ,6]  is due to 
the singular cutoff functions employed which do not meet the criteria given by Barton 
[ 141. 
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3. Electron mass and anomalous magnetic moment 

We now turn to the calculation of the divergent one-loop graphs Z and A of the 
self-energy and vertex correction, respectively (figure 2), which will eventually provide 
the boundary corrections to the physical quantities electron mass and anomalous 
magnetic moment. It will be important to verify the Ward identity Z1 = Z2 which 
guarantees that wavefunction renormalisation cannot change the magnetic moment 
associated with y,, in the on-shell decomposition of the current 

j ,  = P ( p - q ) (  r , h ( q ’ ) - ~ a , . q ~ 2 ( 4 ’ ) ) ~ ( ~ )  

in the effective action. 

a, = g/2  - 1 = f 2 ( 0 )  (3.1) 

3.1. Electron mass 

First we calculate the matrix element of Z between the localised wavepackets (2.3): 

( i i lZlu)= d4x d4yii(y)Z(x,y)u(x) II 
Inserting (2.2) and (2.3) and performing the x, y and q integrations we obtain 

(3.3) 

The shift in p ’  from the second S function (and the corresponding possible uncertainty 
in p ’  due to momentum transfer to the plates) is proportional to k,. As we shall see 
presently, such terms yield regular ‘integrands’f(n) in D of (2.4) and can be omitted 
according to the discussion of the E M F  above. Feynman parametrisation of the 
denominator then gives 

(iiIZ(u) = (2.n),a3(p’-p) - -  I $ 2 ~ . n ” ~  exp(-o’p:)x(p) 

(3.4) 

The decomposition gPcyf i . .  . y ”  = y e . .  . ye - 2 y 3 . .  . y 3  has led to non-covariant terms 
proportional to k3y3 (thus regular and negligible) or proportional to p 3 y 3 .  The latter, 
when weighted with the Gaussian distribution, are associated with powers of the small 
factor l / a m  (according to such arguments the shift in k, in the denominator propor- 
tional to xp, can be disregarded as well). In the case of motion orthogonal to the 
plates the investigation is complicated by such anisotropic terms (see Barton [2]). 
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We proceed as in the usual analysis of on-shell mass and wavefunction renormalisa- 
tion in momentum space, where Sm and 2, are associated with the divergent terms 
Eo and E, in the expansion 

E ( p ) = E o + ( ~ - m ) Z . , + . .  . (3 .5)  
(note that we have not yet used the on-shell condition). Regularisation of uv 
divergences is not necessary, because the k3 integration is already regularised by (2.6) 
and 6 + 0 therein commutes with optional further regularisations. 

Putting the pieces together and performing the d3_k integration 

“=--e 

k3= n m / 4  

8x k p X -  ( 1 - x)( 1 + x - e“)  m3 
m ( k 2  - x2m2)3 

+- 

+ ( I  + n2h2)II2- lnhl]. 

The singular terms l / n h  and In nh arose from the x integrations 

1 (1 + (1  + n 2 h 2 ) 1 / 2 )  
( x 2 +  n 2 h 2 ) l / 2  lnhl 

= In 

(3.7) 

+ [ (1 + (1 + n 2 h 2 ) ’ / 2  n 2 h 2  
lnhl ) + ( l + n 2 h 2 ) l / 2 - l n h l ] .  

Thus it is clear that the k, = nv/a terms, which were omitted above, would only have 
contributed to regular functions of n. 

Finally, subtracting the infinite-space value of Eo, we obtain 

a 
4ma h E’ [l-cos(2vnt)]- ( - l n n ) = - [ + ( t ) + + ( l - t ) + Z C ]  (3.9) 

Am a 
m v n = O  

-=- ( 
in terms of the +b function and the Euler-Mascheroni constant C = -$(l). Details of 
this calculation are given in the appendix. The further singular function In( in (3.6) 
is continuous, though not differentiable at n = 0, and thus contributes only to order h2.  
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The quantity AX1 is singular and has to be regularised with a photon mass. This 
is not surprising, because the wavefunction renormalisation is well known to be I R  

divergent on shell. However, we do not need its (regularised) value, but merely have 
to check that it cancels the analogous term f,(O) from the vertex correction to be 
calculated below. 

3.2. Anomalous magnetic moment 

The anomaly factor a, and the vertex renormalisation form factor f,(O) are now 
calculated from the vertex correction graph figure 2( b ) :  

X , Y ,  z 

x exp[- h2(d+ P ~ ~ ) I C ( P ' M , ( P ' ,  P ) U (  PIA''( P -P') 
with 

A , ( p - q , P ) = -  ;f ,,zs 1 $$ k 2 [ ( p - q - k ) 2 - m 2 ] [ ( p - k ) 2 - m 2 ]  

T(k) = (4m2+ 2k2)y, -4(k'+ m ) k ,  -2yAk'S  2X#y, 

( 1  - 6 " ) T ( k )  - 6"T3(k) 

k,= n a / a  

T3( k) = -4Xk, + 2 k2 yp .  
On the mass shell we now employ the Feynman parametrisation 

( 1  - e " ) T ( k ) - B " T ~ ( k )  
{ [ ( k - x( p - tq ) I 2  - x2 m2}3 

-ie2 f 1 
JO1 d t  Io1 dx 2x 

(2 . rr )3  A, ( P - 9, P 1 = 2a 

(3.11) 

(3.12) 

(3.13) 
k3 = n r r /  a 

shift the k integration and perform the trivial t integration. Retaining only terms which 
eventually yield singular functions of n, we arrive at 

dx 2x 
3 ( 1  - 0")[4y,(i -x )m2+2ixmv , , , q"] .  (3.14) 2a ( k 2 - x  m ) 

k , = n r r / a  

Thus, to first order in h, the boundary corrections are to be calculated from 

(3.15) 
1 C Y "  1 + ( 1  + n2h2)1'2)  

f i ( o ) = g h  C (1 -e")  --+In + regular terms 
n=- -m [ ( lnhl 

+regular terms . 1 f Z ( o ) = Z h  C Y o c  (1 -e" )  [ In ( 1  + ( 1  + n ; h 2 ) " 2 )  

n = - a  
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The vertex correction form factorf,(O) exactly cancels the wavefunction renormalisation 
(3.7). This is required by consistency only for the ‘m-singular’ part l/(nhl. However, 
since all anisotropic terms could be neglected, the formula 

guarantees the Ward identity 2, = 2, to hold up to higher-order terms. Hence, there 
are no boundary corrections to the Dirac magnetic moment associated with y,. Finally, 
the correction to the anomaly factor a,=f2(0) equals the correction to the mass 
counterterm given in (3.9): 

a 
ha, = - [ U + ( ? ) +  $(1- t )  +2C]. 

4ma 
(3.16) 

This coincidence has an important effect. Since the magnetic moment of the electron 
p = g e f  depends on the ratio (1 + a,)/ m, the boundary corrections to the ‘ordinary’ 
and the ‘anomalous’ magnetic moment exactly cancel. At one loop and to first order 
in h there is no boundary correction to the (total) magnetic moment; the gyromagnetic 
ratio and the electron mass are both decreased by the same factor. This observation 
resolves the apparent discrepancy between the results of Brown er a1 [9-111, who 
predicted no boundary correction to the spin-flip frequency in the geonium experiment, 
and the first-order corrections to the anomaly factor, predicted by various other groups 
[3-81. 

4. Summary and discussion 

In this paper we have performed a consistent treatment of renormalised QED between 
conducting plates at one loop and to first order in a long-distance expansion in l /ma 
(the distances to the plates are d and a - d, respectively, and we use natural units). 
The boundary corrections to wavefunction renormalisation and photon vertex -y,, 
though I R  divergent (and gauge dependent), cancel according to the Ward identity 
2, = 2,. In the case of motion parallel to the plates both physical parameters of QED, 
the electron mass rn and its anomaly factor a,, are decreased by the boundary 
corrections 

In agreement with the argument of Brown et a1 [lo, 111 it turns out, by reinserting 
Planck’s constant, that these results are classical. In fact, Am is exactly the electrostatic 
energy of the electron due to its mirror charges?. The higher-order corrections which 
we have neglected are associated with powers of h. Recently boundary corrections 
have been calulated for plane wave electron wavefunctions [5,7,8]. We recover their 
leading logarithmic term -(a/2ma) ln(a/a,) by averaging our result (4.1) over t with 
some cutoff distance a,. In the opinion of the author the precise location of the cutoff 

t I am grateful to Barton for drawing my attention to this fact and for informing me about his related work 
prior to publication. 
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is a rather academic question as long as no experimental situation is specified (it 
appears hard to realise plane waves extending to the surface of the conductor). 

Due to broken translational invariance we had to set up our calculation in configur- 
ation space. Nevertheless it turned out that, in the leading approximation, the whole 
analysis could be performed within momentum space. This is intuitively clear from 
the uncertainty relation: the commutator of the momentum operator pz  with z-depen- 
dent corrections proportional to l / ( a  - z )  is of order l / ( a  - 2)’. Thus, to first order 
in 1/ ma, localisation of the electrons is consistent with a well defined momentum. The 
calculation of higher-order corrections, which are genuine quantum mechanical, will 
require a more involved concept of the localisation of the electrons. 

As special cases we give the results for electrons localised in the middle between 
the plates or approaching one of the plates: 

d = a12 
d<c a. 

Aa =-= 

The latter case a-co provides us with the boundary correction due to a single 
conducting plate at distance d. 

In view of a controversy in the recent literature [3-111 the coincidence of the 
corrections to the gyromagnetic ratio and electron mass, respectively, is of particular 
interest. Whereas most authors found a correction to a, of order a / m a ,  Brown er ai 
[ 10,111 could show that there is no correction of this order to the spin-flip frequency 
w ,  = geB/2mc in the geonium experiment (there is, on the other hand, a correction to 
the cyclotron frequency w ,  = eB/ mc [ 113) .  On this basis they conjectured errors in 
previous work [4,7] due to lack of gauge independence. However, the manifestly 
gauge-independent calculation of Kreuzer and Svozil [ 81 confirmed the first-order 
results. This apparent discrepancy is now trivially resolved by the coincidence of 
h m l m  and ha,: the respective corrections to the ‘ordinary’ and the ‘anomalous’ 
magnetic moment of the electron exactly cancel to order a / m a .  The authors of [3-81 
did not distinguish correctly between the anomaly factor and the magnetic moment. 
Since we have only treated the weak-field limit our results are certainly not applicable 
to geonium, where the cyclotron frequency of the electron is of the order of the lowest 
electromagnetic cavity modes and resonances are to be expected [ l l ,  121. However, 
our results indicate that a similar cancellation might take place in the experimental 
setup considered by Brown et a1 [ l l ] .  

Finally we insert some reasonable parameters in order to obtain an estimate of the 
magnitude of boundary corrections. For electrons localised in the middle between 
conducting plates at a distance of 1 cm 

hae = A m / m  = 2 x a = 2d = 1 cm. (4.3) 

The correction to the magnetic moment is of order a / ( m a ) ’ ,  and is thus smaller by 
ten orders of magnitude, as had been estimated by Brown et ai [ 101. Since resonances 
in the geonium experiment could increase this effect considerably, further improvement 
of the extraordinary precision of recent experiments [9] 

(4.4) p p  , = 1.001 159 652 193 (4) 

may lead to at least a qualitative verification of boundary corrections due to conducting 
surfaces. 
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Appendix 

In this appendix we calculate the difference D between the sum and integral (see (2.6)) 
for the function 

which is the only singular term contributing to Am and Aue in (3.9). 
To this end we use the Abel-Plana formula [14] 

This formula is found by expressing the sum Zf( n) as a contour integral off( n) cot(27rn) 
and deforming the contour to the imaginary axis. Thus f(z) has to be analytic without 
singularities in the positive complex half-plane and the contour integral along the 
half-circle at infinity has to be checked to vanish. 

Both criteria are fulfilled by the function given above if / t i  < 1, so that [16] 

dz 
= i  J" exp(27rz) - 1 

[ln(iz) - In(-iz)][ 1 - cosh(27rzt)l 

exp(zt) + exp( - z t )  - 2 
exp( z )  - 1 =- i [+ ( t )++( - t )+2C]  =a  lom dz 

where C = -+( 1) denotes the Euler-Mascheroni constant. At first sight this result 
seems to be wrong, since the original symmetry d -$ U - d (i.e. t -$ 1 - t )  of the configur- 
ation in figure 1 is no longer present. But one has to be careful: although the Fourier 
(cosine) transform JYm dx lnlxl cos (2~rx /h )  vanishes in the limit h -$ 0 (we have to 
recover the infinite-space result), this term is of order O ( h ) !  In other words: we have 
to subtract the infinite-space value If dn ln(n) instead of Jf dn ln(n)[l -cos(27rnt)]. 
The additional contribution 

lb; dn In( n )  cos(27rnt) = -1/4t ('44) 

(obtained by analytic continuation of the Laplace transform [ 161 of In n )  with +( 1 + t )  = 
$( t )  + l / r  just restores the symmetry t -$ 1 - t :  

1' [ l  -cos(2n7rt)] - In n = - i [+( t )+$( l -  ?)+2C].  (A5) 

Of course, all divergent expressions above have to be regularised by a factor exp(-an) 
with 6+0+ at the end of the calculations. 
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